



# 1.7V-6V Vin, 500mA, 8uA I<sub>Q</sub>, Low-Dropout Regulator

### **FEATURES**

- Qualified for Automotive Applications
- AEC-Q100 Qualified with the Following Results:
  Device Temperature Grade 1: -40°C to 125°C
  Ambient Operating Temperature Range
  - Device HBM ESD Classification Level H3A
  - Device CDM ESD Classification Level C3
- Wide Input Range: 1.7V-6V
- Maximum Output Current: 500mA
- Output Voltage:
  - > 1.2V, 1.8V and 3.3V (Fixed Output)
  - 0.7V~5V (Adjustable Output Version-SCT71005A01Q)
  - 0.5V~5V (Adjustable Output Version-SCT71005A02Q)
- Output Voltage Accuracy:
  - ➤ T」= 25°C : ±1%
  - ➤ T」= -40°C~ 125°C : ±2%
- Low Quiescent Current: 8uA
- Ultra-Low Shutdown Current: 0.02uA
- Low Dropout Voltage(Adjustable Output Version) :
  - > 54mV at 200mA load current
  - > 143mV at 500mA load current
- Support Output Capacitors Range:
  - ➢ 2.2uF~220uF
  - Low-ESR: 0.001Ω~ 5 Ω
- 2.14ms Internal Soft-start Time(V<sub>REF</sub>=500mV)
- 2.05ms Internal Soft-start Time(V<sub>REF</sub>=700mV)
- Integrated Short-Circuit Protection with OCFB (Over Current Fold-back) Feature
- Precision Enable Threshold for Programmable Input Voltage Under-Voltage Lock Out Protection (UVLO) Threshold and Hysteresis
- Over-Temperature Protection
- Power-Good Feature is available
- Active Output Discharge
- Available Package: SOT23-5/ TDFN2x2-6/ TDFN2x3-8

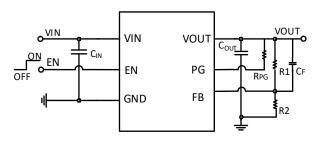
# APPLICATIONS

- Battery-Powered Systems
- Automotive infotainment
- Navigation systems
- Portable appliances

## DESCRIPTION

The SCT71005Q series products is a low-dropout linear regulator designed to operate with a wide inputvoltage range from 1.7 V to 6 V and 500mA output current with enable control and Power-Good feature. The SCT71005Q series products is stable with 2.2uF~220uF output capacitors, and 10uF ceramic capacitor is recommended.

Only 8-µA typical quiescent current at light load makes the SCT71005Q series products ideal choices for portable devices with battery power supply and an optimal solution for powering microcontrollers (MCUs) and CAN/LIN transceivers in always-on systems.


The SCT71005Q series products implements power good circuit (PG) which indicates that output voltage is in regulation. This signal could be used for power sequencing or as a microcontroller reset.

The SCT71005Q series products integrated shortcircuit and overcurrent protection with OCFB (Over Current Fold-back) feature, which makes the device more reliable during transient high-load current faults or shorting events.

The SCT71005Q series products provide fixed 1.2V,1.8V and 3.3V output voltage versions, and also could provide adjust output voltage version with  $0.7V_{\circ}$  0.5V feedback voltage.

The SCT71005Q series products is available in SOT23-5, TDFN2x2-6 and TDFN2x3-8 packages, for other package options, please contact SCT sales.

# **TYPICAL APPLICATION**



## **REVISION HISTORY**

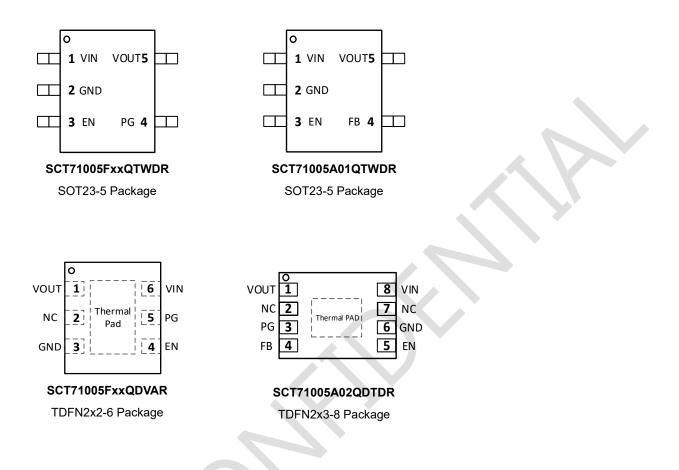
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Revision 0.8: Sampling.

Revision 0.81: Update the thermal information and thermal characteristics.

Revision 0.82: Update the electrical characteristics.

Revision 0.83: Update the thermal information and features.


Revision 0.84: Update the input voltage range to 6V.

## **DEVICE ORDER INFORMATION**

| Part Number      | Output Voltage | Package   | Package<br>Marking | Transport Media,<br>Quantity |
|------------------|----------------|-----------|--------------------|------------------------------|
| SCT71005F33QTWDR | Fixed 3.3V     | SOT23-5   | 5F33Q              | Tape & Reel, 3000            |
| SCT71005F18QTWDR | Fixed 1.8V     | SOT23-5   | 5F18Q              | Tape & Reel, 3000            |
| SCT71005F12QTWDR | Fixed 1.2V     | SOT23-5   | 5F12Q              | Tape & Reel, 3000            |
| SCT71005A01QTWDR | Adjust         | SOT23-5   | 5A01Q              | Tape & Reel, 3000            |
| SCT71005F33QDVAR | Fixed 3.3V     | TDFN2X2-6 | 5F33Q              | Tape & Reel, 3000            |
| SCT71005F18QDVAR | Fixed 1.8V     | TDFN2X2-6 | 5F18Q              | Tape & Reel, 3000            |
| SCT71005F12QDVAR | Fixed 1.2V     | TDFN2X2-6 | 5F12Q              | Tape & Reel, 3000            |
| SCT71005A02QDTDR | Adjust         | TDFN2X3-8 | 5A02Q              | Tape & Reel, 5000            |



## **PIN CONFIGURATION**



# **PIN FUNCTIONS**

### SOT23-5/SCT71005FxxQ:

| NAME | NAME | PIN FUNCTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1    | VIN  | Input voltage pin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 2    | GND  | Ground reference pin.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 3    | EN   | Enable input pin. This pin has an internal resistor( $R_{EN_pulldown}$ ) to hold the regulator off by default. A low voltage( $V_{EN} < V_{EN_L}$ ) on this pin turns the regulator off and discharges the output pin to GND through an internal pulldown resistor( $R_{discharge}$ ).A high voltage( $V_{EN} > V_{EN_H}$ ) on this pin enables the regulator output.The pulldown resistor( $R_{EN_pulldown}$ ). $R_{EN_pulldown}$ Is disconnected to reduce input current when $V_{EN} > V_{EN_H}$ . |
| 4    | PG   | Power-good pin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 5    | VOUT | Regulated output voltage pin                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |



### SOT23-5/SCT71005A01Q:

| NAME    | NAME             | PIN FUNCTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|---------|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1       | VIN              | Input voltage pin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 2       | GND              | Ground reference pin.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 3       | EN               | Enable input pin. This pin has an internal resistor( $R_{EN_pulldown}$ ) to hold the regulator off by default. A low voltage( $V_{EN} < V_{EN_L}$ ) on this pin turns the regulator off and discharges the output pin to GND through an internal pulldown resistor( $R_{discharge}$ ). A high voltage( $V_{EN} > V_{EN_L}$ ) on this pin enables the regulator output. The pulldown resistor( $R_{EN_pulldown}$ ). $R_{EN_pulldown}$ Is disconnected to reduce input current when $V_{EN} > V_{EN_H}$ . |
| 4       | FB               | Feedback voltage pin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 5       | VOUT             | Regulated output voltage pin                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| TDFN2x2 | -6/SCT71005FxxQ: |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

### TDFN2x2-6/SCT71005FxxQ:

| NAME | NAME        | PIN FUNCTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1    | VOUT        | Regulated output voltage pin                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 2    | NC          | No connection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 3    | GND         | Ground reference pin.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 4    | EN          | Enable input pin. This pin has an internal resistor( $R_{EN_pulldown}$ ) to hold the regulator off by default. A low voltage( $V_{EN} < V_{EN_L}$ ) on this pin turns the regulator off and discharges the output pin to GND through an internal pulldown resistor( $R_{discharge}$ ).A high voltage( $V_{EN} > V_{EN_H}$ ) on this pin enables the regulator output.The pulldown resistor( $R_{EN_pulldown}$ ). $R_{EN_pulldown}$ Is disconnected to reduce input current when $V_{EN} > V_{EN_H}$ . |
| 5    | PG          | Power-good pin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 6    | VIN         | Input voltage pin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 7    | Thermal Pad | Connect the thermal pad to a large area GND plane for improved thermal performance.                                                                                                                                                                                                                                                                                                                                                                                                                   |

## TDFN2x3-8/SCT71005A02Q:

| NAME | NAME | PIN FUNCTION                 |  |
|------|------|------------------------------|--|
| 1    | VOUT | Regulated output voltage pin |  |
| 2    | NC   | No connection                |  |



| 3 | PG          | Power-good pin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|---|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4 | FB          | Feedback voltage pin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 5 | EN          | Enable input pin. This pin has an internal resistor( $R_{EN_pulldown}$ ) to hold the regulator off by default. A low voltage( $V_{EN} < V_{EN_L}$ ) on this pin turns the regulator off and discharges the output pin to GND through an internal pulldown resistor( $R_{discharge}$ ). A high voltage( $V_{EN} > V_{EN_L}$ ) on this pin enables the regulator output. The pulldown resistor( $R_{EN_pulldown}$ ). $R_{EN_pulldown}$ Is disconnected to reduce input current when $V_{EN} > V_{EN_H}$ . |
| 6 | GND         | Ground reference pin.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 7 | NC          | No connection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 8 | VIN         | Input voltage pin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 9 | Thermal Pad | Connect the thermal pad to a large area GND plane for improved thermal performance.                                                                                                                                                                                                                                                                                                                                                                                                                     |



# **RECOMMENDED OPERATING CONDITIONS**

Over operating free-air temperature range unless otherwise noted

| PARAMETER       | DEFINITION                             | MIN   | МАХ | UNIT |
|-----------------|----------------------------------------|-------|-----|------|
| VIN             | Input voltage range                    | 1.7   | 6   | V    |
|                 | Fixed Output voltage                   | 1.2   | 3.3 | V    |
| Vout            | Adjustable Output Version-SCT71005A01Q | 0.7   | 5   | V    |
|                 | Adjustable Output Version-SCT71005A02Q | 0.5   | 5   | V    |
| VEN             | Enable input voltage                   | 0     | Vin | V    |
| V <sub>PG</sub> | Power-good pin voltage                 | 0     | 5.5 | V    |
| CIN             | Input capacitor                        | 2.2   |     | uF   |
| COUT            | Output capacitor                       | 2.2   | 220 | uF   |
| ESR             | Output capacitor ESR requirements      | 0.001 | 5   | Ω    |
| TJ              | Operating junction temperature         | -40   | 125 | С°   |

## **ABSOLUTE MAXIMUM RATINGS**

Over operating free-air temperature range unless otherwise noted (1)

| PARAMETER                     | DEFINITION                     | MIN  | МАХ | UNIT |
|-------------------------------|--------------------------------|------|-----|------|
| VIN                           | Maximum input voltage range    | -0.3 | 6.5 | V    |
| Vout                          | Maximum output voltage range   | -0.3 | 6   | V    |
| V <sub>EN</sub>               | Maximum enable input voltage   | -0.3 | VIN | V    |
| V <sub>PG</sub>               | Maximum power-good pin voltage | -0.3 | 6   | V    |
| T <sub>J</sub> <sup>(2)</sup> | Junction temperature range     | -40  | 150 | °C   |
| T <sub>stg</sub>              | Storage temperature range      | -65  | 150 | °C   |

(1) Stresses beyond those listed under Absolute Maximum Rating may cause device permanent damage. The device is not guaranteed to function outside of its Recommended Operation Conditions.

(2) The IC includes over temperature protection to protect the device during overload conditions. Junction temperature will exceed 150°C when over temperature protection is active. Continuous operation above the specified maximum operating junction temperature will reduce lifetime.

# ESD RATINGS

| PARAMETER | DEFINITION                                                                                   | MIN | МАХ | UNIT |
|-----------|----------------------------------------------------------------------------------------------|-----|-----|------|
|           | Human Body Model(HBM), per ANSI-JEDEC-JS-001-2014 specification, all pins <sup>(1)</sup>     | -7  | +7  | kV   |
| Vesd      | Charged Device Model(CDM), per ANSI-JEDEC-JS-002-2014 specification, all pins <sup>(2)</sup> | -1  | +1  | kV   |

JEDEC document JEP155 states that 500V HBM allows safe manufacturing with a standard ESD control process.
 JEDEC document JEP157 states that 250V CDM allows safe manufacturing with a standard ESD control process.



# **THERMAL INFORMATION**

The value of ReJA and ReJC given in this table is only valid for comparison with other packages and cannot be used for design purposes. Because they were simulated in accordance with JESD 51-7. They do not represent the performance obtained in an actual application. For design information see Power Dissipation and Thermal Performance section.

The value of  $R_{\theta JA_EVM}$  is the tested results based on our EVM, and is more useful for thermal design. Even if it still do not represent the thermal performance of customer's PCB design, but it was a good starting point for thermal performance design.

The PCB information of our EVM: 4-layer,1oz Cu (inner 0.5oz Cu).

The values given in this table are not a characteristic of package itself, but of many other system level characteristics such as the design and layout of the printed circuit board (PCB), thermal pad size, and external environmental factors. The PCB board is a heat sink that is soldered to the leads and thermal pad of the device. Changing the design or configuration of the PCB board changes the efficiency of the heat sink and therefore the actual values of the below table.

| Package Type | $R_{\theta JA}^{(1)}$ | $\Psi_{JT}$ | Ψ <sub>JB</sub> | $R_{\theta JCtop}$ <sup>(2)</sup> | $R_{	heta JA = VM}^{(3)}$ | UNIT |
|--------------|-----------------------|-------------|-----------------|-----------------------------------|---------------------------|------|
| SOT23-5      | 173.05                | 38.88       | 59.94           | 129                               | 91.81                     |      |
| TDFN2X2-6    | 101.7                 | 25.23       | 65              | 166.05                            | 71.31                     | °C/W |
| TDFN2X3-8    | 99.76                 | 24.76       | 64.7            | 126.7                             | 59.04                     |      |

(1) R<sub>0JA</sub> is junction to ambient thermal resistance, based on JESD51-7.

(2)  $R_{\theta JC}$  is junction to case thermal resistance, based on JESD51-7.

(3) R<sub>0JA\_EVM</sub> is junction to ambient thermal resistance, which is tested on SCT EVM.



7

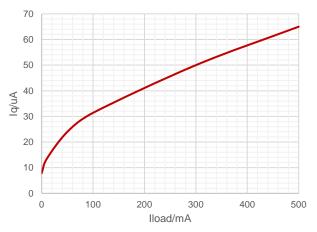
# **ELECTRICAL CHARACTERISTICS**

VIN=VOUT+1V, COUT=10uF, TJ= -40°C~125°C, typical value is tested under 25°C.

| SYMBOL         | PARAMETER                                          | TEST CONDITION                                                                   | MIN | ΤΥΡ  | MAX   | UNIT |
|----------------|----------------------------------------------------|----------------------------------------------------------------------------------|-----|------|-------|------|
| Power Sup      | ply                                                |                                                                                  |     |      |       |      |
| Vin            | Operating input voltage                            |                                                                                  | 1.7 |      | 6     | V    |
| \ <i>\</i>     | VIN UVLO Threshold                                 | V <sub>IN</sub> rising                                                           |     | 1.5  | 1.695 | V    |
| Vuvlo          | Hysteresis                                         |                                                                                  |     | 100  |       | mV   |
| Vin            | Operating input voltage                            | (SCT71005A01Q)                                                                   | 2.2 |      | 6     | V    |
| Mana           | VIN UVLO Threshold                                 | V <sub>IN</sub> rising(SCT71005A01Q)                                             |     | 2    | 2.195 | V    |
| Vuvlo          | Hysteresis                                         |                                                                                  |     | 100  |       | mV   |
| ISHDN          | Shutdown current from VIN pin                      | EN=0, V <sub>OUT</sub> =1.8V, V <sub>IN</sub> =2.8V, T <sub>J</sub> =<br>25°C    | X   | 0.02 | 0.2   | μA   |
| la             | Quiescent current from GND pin                     | EN float, no load, VIN=VOUT+1V                                                   |     | 8    |       | μA   |
| Regulated (    | Output Voltage and Current                         |                                                                                  |     |      |       |      |
|                |                                                    | T <sub>J</sub> = 25°C                                                            | -1% |      | 1%    |      |
| Vout           | Output voltage accuracy                            | T <sub>J</sub> = -40°C~125°C                                                     | -2% |      | 2%    |      |
| Vref F         |                                                    | T <sub>J</sub> = 25°C(SCT71005A01Q)                                              | 693 | 700  | 707   | mV   |
|                | Feedback voltage accuracy                          | T <sub>J</sub> = -40°C~125°C(SCT71005A01Q)                                       | 686 | 700  | 714   | m۷   |
|                |                                                    | T <sub>J</sub> = 25°C(SCT71005A02Q)                                              | 495 | 500  | 505   | m۷   |
|                |                                                    | T <sub>J</sub> = -40°C~125°C(SCT71005A02Q)                                       | 490 | 500  | 510   | m۷   |
|                | Line regulation                                    | VIN=VOUT+1V to 6V, lout=10mA                                                     |     | 3    | 10    | m۷   |
|                |                                                    | Iout=1mA to 500mA(Adjustable                                                     |     | 10   | 20    | mV   |
| $\Delta V$ out | Load regulation                                    | Output)<br>lout=1mA to 500mA(Fixed Output-<br>F12 and F18)                       |     | 16   | 30    | mV   |
|                |                                                    | lout=1mA to 500mA(Fixed Output-<br>F33)                                          |     | 25   | 38    | mV   |
|                |                                                    | VIN=VOUT-0.1V ,Iout =100mA                                                       |     | 28   |       | m۷   |
|                | Dropout voltage <sup>(1)</sup> (Adjustable Output) | V <sub>IN</sub> =V <sub>OUT</sub> -0.1V ,lout =200mA                             |     | 54   |       | m۷   |
|                | Culputy                                            | VIN=VOUT-0.1V ,Iout =500mA                                                       |     | 143  |       | m۷   |
|                |                                                    | V <sub>IN</sub> =V <sub>OUT</sub> -0.1V ,Iout =100mA                             |     | 49   |       | mV   |
| Vdrop          | Dropout voltage(Fixed Output-<br>F18)              | VIN=VOUT-0.1V ,Iout =200mA                                                       |     | 100  |       | mV   |
|                |                                                    | V <sub>IN</sub> =V <sub>OUT</sub> -0.1V ,Iout =500mA                             |     | 297  |       | mV   |
|                |                                                    | V <sub>IN</sub> =V <sub>OUT</sub> -0.1V ,Iout =100mA                             |     | 26   |       | m۷   |
|                | Dropout voltage(Fixed Output-<br>F33)              | VIN=VOUT-0.1V ,Iout =200mA                                                       |     | 54   |       | mV   |
|                |                                                    | V <sub>IN</sub> =V <sub>OUT</sub> -0.1V ,Iout =500mA                             |     | 138  |       | mV   |
| Іоит           | Output current                                     | Vout in regulation                                                               | 0   |      | 500   | mA   |
| loc            | Output current limit                               | V <sub>OUT</sub> short to 90% × V <sub>OUT</sub>                                 |     | 800  |       | mA   |
| lsc            | Short current limit                                | Vout=0V                                                                          |     | 290  |       | mA   |
|                |                                                    | V <sub>OUT</sub> =1.2V,I <sub>OUT</sub> =10mA, f=1kHz,<br>C <sub>OUT</sub> =10µF |     | 47   |       | dB   |
| PSRR           | Power supply rejection ratio <sup>(2)</sup>        | Vout=1.2V,Iout=10mA, f=10kHz,<br>Cout=10µF                                       |     | 31   |       | dB   |
|                |                                                    | Vouτ=1.2V,Iouτ=10mA, f=100kHz,<br>Couτ=10μF                                      |     | 44   |       | dB   |



| SYMBOL                   | PARAMETER                                     | TEST CONDITION                                                                 | MIN TYP | MAX    | UNIT |
|--------------------------|-----------------------------------------------|--------------------------------------------------------------------------------|---------|--------|------|
| Over Voltag              | e Protection                                  |                                                                                |         |        |      |
| OVP <sub>H</sub>         | overshoot of Vout when<br>discharge occur     | V <sub>IN</sub> =3.3V                                                          | 1159    | %      |      |
| OVP∟                     | overshoot of Vout when<br>discharge disappear | V <sub>IN</sub> =3.3V                                                          | 1109    | 6      |      |
| OVP <sub>Hys</sub>       | overshoot of Vout hysteresis                  |                                                                                | 5%      |        |      |
| Enable and               | Soft-startup                                  |                                                                                |         |        |      |
|                          |                                               | V <sub>EN_H_1.8</sub> (V <sub>IN</sub> =1.8V)                                  | 0.63    | 3      | V    |
| V <sub>EN_H</sub>        | Enable rising threshold                       | V <sub>EN_H_3.3</sub> (V <sub>IN</sub> =3.3V)                                  | 0.75    | 5      | V    |
|                          |                                               | V <sub>EN_H_5</sub> (V <sub>IN</sub> =5V)                                      | 0.86    | 7      | V    |
|                          |                                               | V <sub>EN_L_1.8</sub> (V <sub>IN</sub> =1.8V)                                  | 0.60    | 7      | V    |
| Ven_l                    | Enable falling threshold                      | V <sub>EN_L_3.3</sub> (V <sub>IN</sub> =3.3V)                                  | 0.66    | 3      | V    |
|                          |                                               | V <sub>EN_L_5</sub> (V <sub>IN</sub> =5V)                                      | 0.68    | 5      | V    |
|                          |                                               | VEN_Hys_1.8(VIN=1.8V)                                                          | 23      |        | mV   |
| V <sub>EN_Hys</sub>      | Enable threshold hysteresis                   | VEN_Hys_3.3(VIN=3.3V)                                                          | 85      |        | mV   |
|                          |                                               | V <sub>EN_Hys_5</sub> (V <sub>IN</sub> =5V)                                    | 180     | )      | mV   |
| IEN_0V                   | Enable pin current                            | EN=0                                                                           |         | 0.2    | μA   |
| IEN_3.3V                 | Enable pin current                            | EN=3.3V                                                                        | 0.01    | 1 0.2  | μA   |
| R <sub>EN_pulldown</sub> | enable pulldown resistor                      |                                                                                | 648     | }      | kΩ   |
|                          |                                               | V <sub>REF</sub> =700mV                                                        | 2.05    | 5      | ms   |
| Tss                      | Soft-start time                               | V <sub>REF</sub> =500mV                                                        | 2.14    | 1      | ms   |
|                          |                                               | Fixed Output                                                                   | 1.7     |        | ms   |
| Power Goo                | d                                             |                                                                                | -       |        |      |
| Vpg_r                    | PG rising threshold percentage                | Vout/Vout(NOM), when Vout rising                                               | 90%     | ,<br>D |      |
| Vpg_f                    | PG falling threshold percentage               | Vout/Vout(NOM),when Vout falling                                               | 80%     | ,<br>0 |      |
| Vpg_low                  | PG output low voltage                         | PG sink 0.5mA                                                                  | 82      |        | mV   |
| Rpg                      | PG pull down resistor                         | R <sub>PG</sub> =V <sub>PG_LOW</sub> /0.5mA                                    | 165     | 5      | Ω    |
| Ipg_lkg                  | PG leakage current                            | PG=5V, VOUT in regulation                                                      |         | 0.2    | uA   |
| Td_pgr                   | PG signal turn to high delay                  | From V <sub>OUT</sub> >0.90xV <sub>OUT(NOM)</sub> to PG rising edge delay time | 170     | )      | us   |
| Td_pgf                   | PG signal turn to low delay                   | From Vout<0.80xVout(NOM) to PG falling edge delay time                         | 88      |        | us   |
| Active Disc              | harge                                         |                                                                                |         |        |      |
| Rdischarge               | Low output NMOS on resistance                 | EN=0,VIN=3.3V                                                                  | 133     |        | Ω    |
| Thermal Pro              | otection                                      |                                                                                |         |        |      |
| Tsd                      | Thermal shutdown threshold <sup>(3)</sup>     | T <sub>J</sub> rising                                                          | 170     | )      | °C   |
| I SD                     |                                               | Hysteresis                                                                     | 15      |        | °C   |


(1) The dropout voltage is defined as  $V_{IN}$ - $V_{OUT}$ , when force  $V_{IN}$  is 100mV below the value of  $V_{OUT}$  for  $V_{IN}$ = $V_{OUT(NOM)}$ +1V.

(2) PSRR is derived from bench characterization, not production test.

(3) Thermal shutdown threshold is derived from bench characterization, not production test.



# **TYPICAL CHARACTERISTICS**





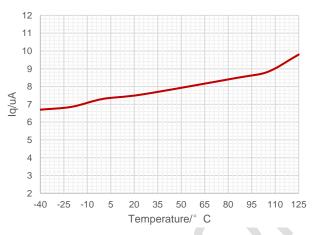



Figure 3. Quiescent Current vs Ambient Temperature

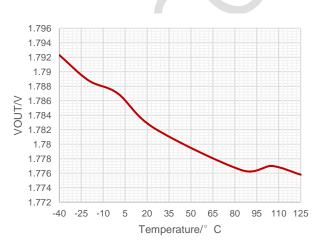



Figure 5. Output Voltage vs Ambient Temperature at VOUT=1.8V

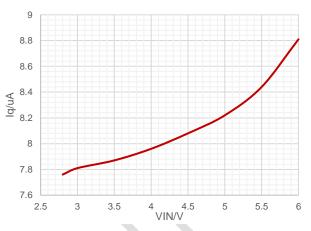
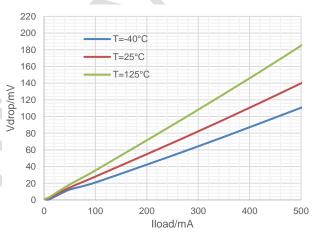
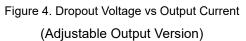





Figure 2. Quiescent Current vs Input Voltage, No load





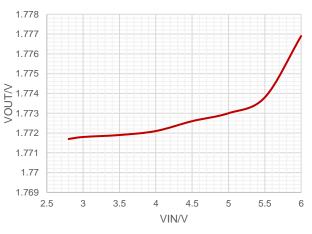
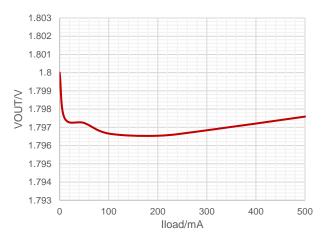




Figure 6. Output Voltage vs Input Voltage





# **TYPICAL CHARACTERISTICS (continued)**



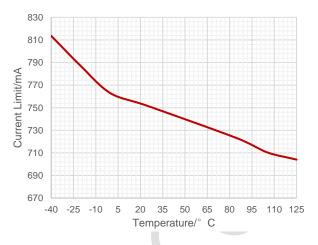
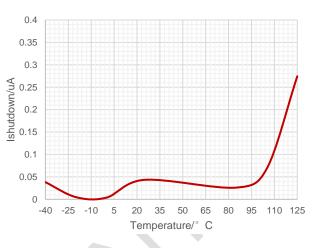
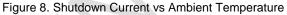





Figure 9. Output Current Limit vs Ambient Temperature





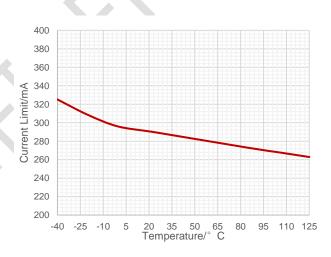
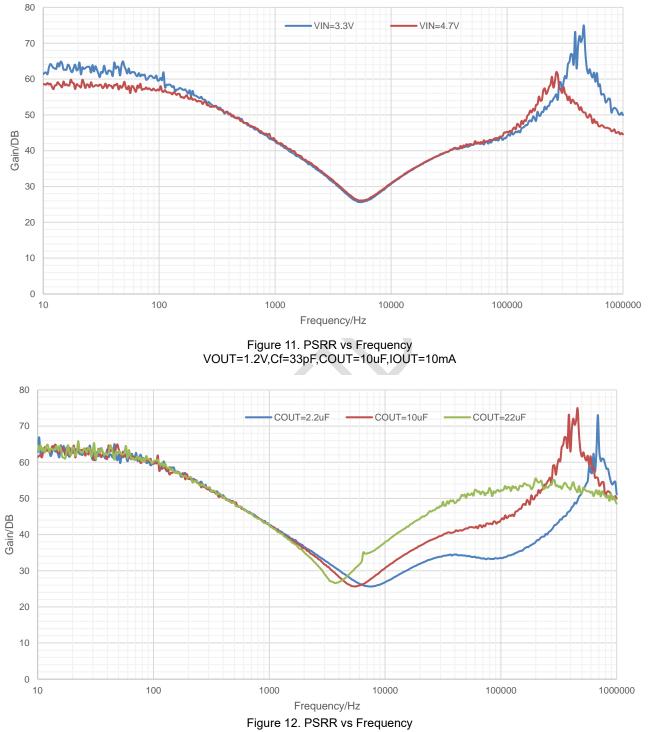
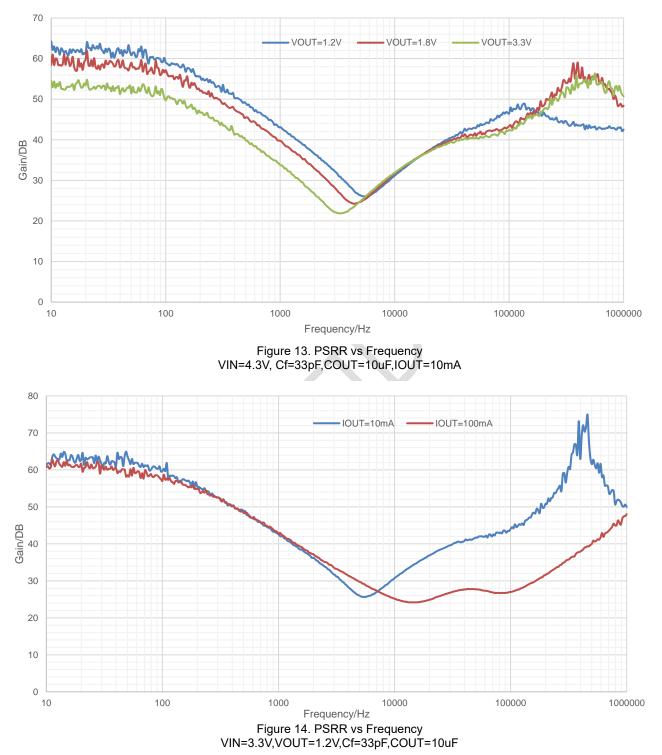




Figure 10. Short Current Limit vs Ambient Temperature




(Adjustable Output Version)

# **TYPICAL CHARACTERISTICS (continued)**



VIN=3.3V,VOUT=1.2V,Cf=33pF,IOUT=10mA





# **TYPICAL CHARACTERISTICS (continued)**



# FUNCTIONAL BLOCK DIAGRAM

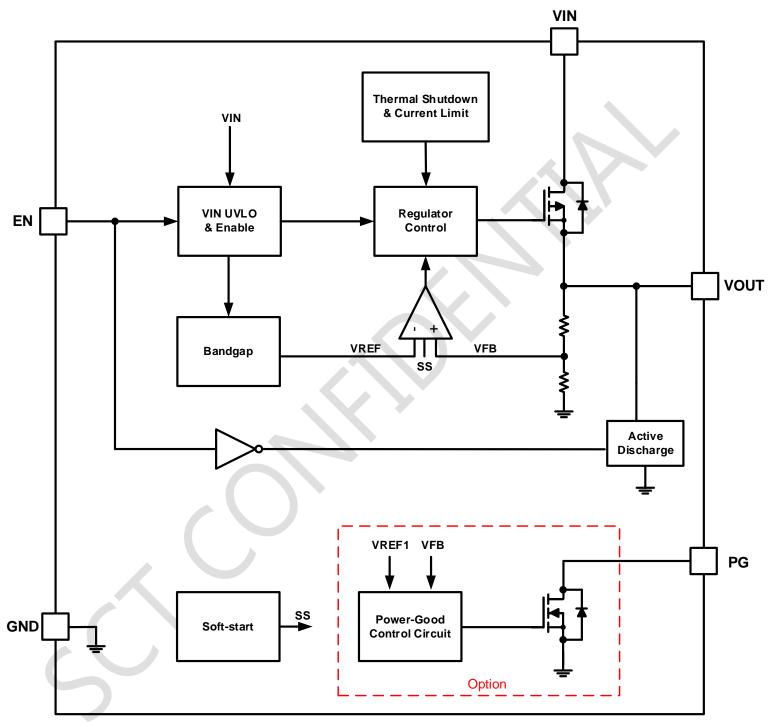
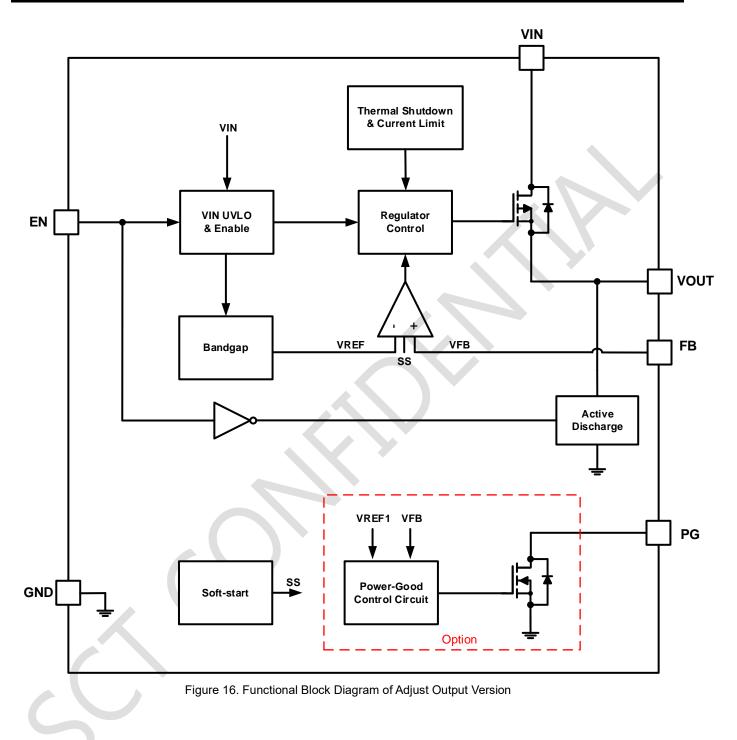




Figure 15. Functional Block Diagram of Fixed Output Version







# **OPERATION**

#### Overview

The SCT71005Q product are 500mA output current linear regulators with very low quiescent current. These voltage regulators operate from 1.7V to 6V DC input voltage and consume 8µA quiescent current at no load.

The SCT71005Q products are stable with 2.2uF~220uF output capacitors, and 10uF ceramic capacitor is recommended. An internal soft-start time avoids large inrush current and output voltage overshoot during startup.

The SCT71005Q products also provide enable control which is very suitable for the applications needing sequence configuration. Other protection features include the VIN input under-voltage lockout, over current protection, output hard short protection with OCFB and thermal shutdown protection.

The SCT71005Q series products are available in fixed voltage versions of 1.2V, 1.8V and 3.3V with 1% output voltage accuracy at room temp and 2% output voltage accuracy over operating conditions.

The SCT71005Q series products also provide adjustable output version which can adjust the output voltage from 0.5V to 5V. The product is available in SOT23-5, TDFN2x2-6, DFN1x1-4 and TDFN2x3-8 packages.

If you need a new output voltage version or a new package option, please feel free to contact SCT sales.

#### Output Enable

The enable pin (EN) is active high. Enable the device by forcing the voltage of the enable pin to exceed the minimum EN pin high-level input voltage. Turn off the device by forcing the voltage of the enable pin to drop below the maximum EN pin low-level input voltage. If shutdown capability is not required, connect EN to IN.

This EN circuit has an pulldown resistor(R<sub>EN\_pulldown</sub>) disconnected to reduce input current when the output is enabled, and connected when EN pin low to disable the output. Floating the EN pin is not suggestion.

#### Regulated Output Voltage

The SCT71005Q product provide adjustable output which can adjust the output voltage from 0.5V to 5V. When the input voltage is higher than  $V_{OUT(NOM)}+V_{DROP}$ , output pin is the regulated output based on the selected voltage version. When the input voltage falls below  $V_{OUT(NOM)}+V_{DROP}$ , output pin tracks the input voltage minus the dropout voltage based on the load current. When the input voltage drops below UVLO threshold, the output keeps shut off.

If you need a new output voltage version or a new package option, please feel free to contact SCT sales.

#### Output Discharge

The SCT71005Q product has an internal pulldown MOSFET that connects an R<sub>discharge</sub> resistor to ground when the device is disabled to actively discharge the output voltage. The active discharge circuit is activated by the enable pin.

Do not rely on the active discharge circuit to discharge the output voltage after the input supply has collapsed because reverse current can possibly flow from the output to the input. This reverse current flow can cause damage to the device, especially when a large output capacitor is used. Limit reverse current to no more than 5% of the device rated current for a short period of time.

#### **Over Current Limit and Foldback Current Limit**

The SCT71005Q product has an internal current limit circuit that protects the regulator during transient high-load current faults or shorting events. The current limit is a hybrid brick-wall foldback scheme. The current limit transitions from a brick-wall scheme to a foldback scheme at the foldback voltage ( $V_{FOLDBACK}$ ). In a high-load current fault with the output voltage above  $V_{FOLDBACK}$ , the brick-wall scheme limits the output current to the current limit (loc). When the output voltage drops below  $V_{FOLDBACK}$ , a foldback current limit activates that scales back the current limit. When the output is shorted, the device supplies a typical current called the short-circuit current limit ( $I_{SC}$ ). Ioc and  $I_{SC}$  are listed in the Electrical Characteristics table.



The output voltage is not regulated when the device is in current limit. When a current limit event occurs, the regulator begins to heat up because of the increase in power dissipation. When the device is in brick-wall current limit, the pass transistor dissipates power  $[(V_{IN}-V_{OUT})\times I_{OC}]$ . When the output is shorted and the output voltage is less than  $V_{FOLDBACK}$ , the pass transistor dissipates power  $[(V_{IN}-V_{OUT})\times I_{OC}]$ . If thermal shutdown is triggered, the device turns off. After the device cools down, the internal thermal shutdown circuit turns the device back on. If the output current fault condition persists, the device cycles between current limit and thermal shutdown.

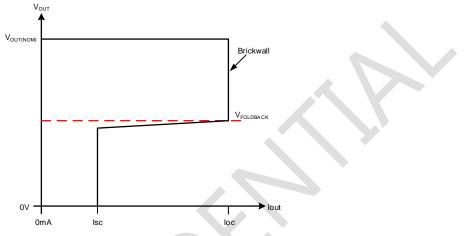



Figure 17. Current Limit with Foldback Feature

#### Internal Soft-Start

The SCT71005Q product integrates an internal soft-start circuit that ramps the reference voltage from zero volts to 0.5V reference voltage in 1.7ms(Fixed Output). If the EN pin is pulled below 0.607V, LDO will be shut off and the internal soft-start resets. The soft-start also resets during shutdown due to thermal overloading.

Below figure shows the startup waveform at small output capacitor and large output capacitor. When output capacitor is small, for example 10uF, the slope of VOUT is limit by soft-start. When output capacitor is large, for example 100uF, the slope of VOUT is limited by foldback current limit (I<sub>SC</sub>) at VOUT<V<sub>FOLDBACK</sub>, and the slope of VOUT is limited by over current limit (I<sub>OC</sub>), when VOUT>V<sub>FOLDBACK</sub>.

In SCT71005Q product, typical Tss is 1.7ms(Fixed Output), and typical I<sub>OC</sub> is 800mA and typical Isc is 290mA, could use the following formula for initial startup time calculation.

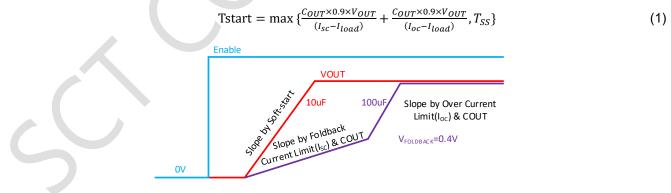



Figure 18. Soft-start Waveform vs Output Capacitor



#### Power-Good and Power-Good Delay

The power-good (PG) pin is an open-drain output and can be connected to any 5V or lower rail through an external pull-up resistor. The PG output is high-impedance when VOUT is greater than the PG trip threshold ( $V_{PG_R}=90\% \times V_{OUT(NOM)}$ ). If VOUT drops below  $V_{PG_F}=80\% \times V_{OUT(NOM)}$ , the open-drain output turns on and pulls the PG output low. If output voltage monitoring is not needed, the PG pin can be left floating or connected to GND.

The power-good delay time  $(Td_{PGR})$  is defined as the time period from when  $V_{OUT}$  exceeds the PG trip threshold voltage ( $V_{PG_R}$ ) to when the PG output is high. This power-good delay time is set by an internal time, which is170us typical. The power-good deglitch time ( $Td_{PGF}$ ) is defined as the time period from when  $V_{OUT}$  fall below the PG trip threshold voltage ( $V_{PG_F}$ ) to when the PG output is low. This power-good deglitch time is set by an internal time, which is 88us typical. If the power-good delay time is not enough for some application, could try to connect a capacitor from PG pin to GND and using PG pull-up resistor and this capacitor generate extra delay time to meet your design.

To ensure proper operation of the power-good feature, maintain  $V_{IN} \ge 1.7V$  ( $V_{IN\_MIN}$ ). It allows connections of PG pin to circuit with the same or different power supply voltage to the LDO's VOUT level. Below are the connections examples.

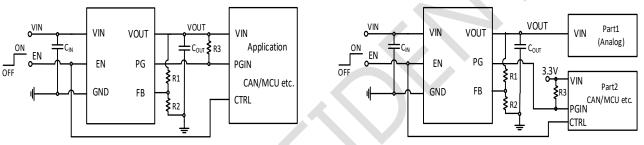



Figure 19. PG Connected to LDO's Ouput

Figure 20. PG Connected to the other Power Supply

Below figure shows the startup and shutdown situation when slow power up and power down.

At the point 0, the input voltage starts to rise from 0 to 5V, LDO is in shutdown (because VIN is below its UVLO

threshold) and output voltage is 0V.

At the point 1, the VIN voltage reaches UVLO threshold level and LDO starts charging of output capacitor. VOUT rising speed is defined by internal soft-start function.

At the point 2, the VOUT voltage reaches almost the VIN voltage as it rises faster and LDO gets into dropout region. The difference between VIN and VOUT is the dropout voltage.

At the point 3, the VOUT reaches PG threshold ( $V_{PG_R}=90\% \times V_{OUT(NOM)}$ ) and from this point LDO counts the power good delay time (Td\_PGR). After this delay, the PG pin rises to high level showing that VOUT is ok.

At the point 4, the VOUT reaches its nominal value (3.3V) as the VIN starts to be higher than ( $V_{OUT(NOM)} + V_{DROP}$ ) and LDO gets into regulation region.

At the point 5, as the VIN voltage slow power down and LDO returns to dropout region again.

At the point 6, the VOUT drops below PG threshold ( $V_{PG_F}$ =80% x  $V_{OUT(NOM)}$ ) and LDO starts counting the power good deglitch time (Td\_PGF), which filters fast VOUT undershoots(caused for example by line/load transient responses). After this delay, the PG output is shorted to 0 V level to highlight "power fail" state.

At the point 7, the VIN voltage is lower than input voltage UVLO threshold minus UVLO hysteresis level and LDO goes into the shutdown state.



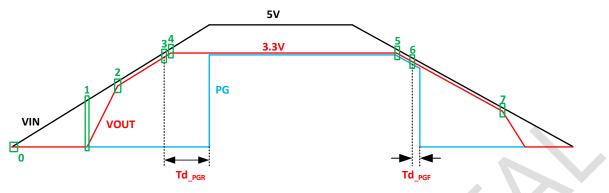



Figure 21. Startup and Shutdown Example —SCT71005Q Series

#### **Thermal Shutdown**

This device incorporates a thermal shutdown ( $T_{SD}$ ) circuit as a protection from overheating. For continuous normal operation, the junction temperature should not exceed the  $T_{SD}$  trip point. The junction temperature exceeding the  $T_{SD}$  trip point causes the output to turn off. When the junction temperature falls below the  $T_{SD}$  trip point minus thermal shutdown hysteresis, the output turns on again.



# **APPLICATION INFORMATION**

### **Typical application 1:**

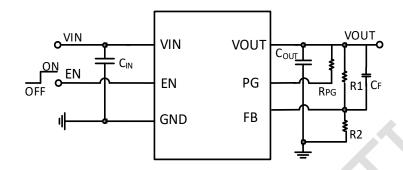



Figure 22. SCT71005Q Typical Application Schematic

| Design Parameters                                                 |                              |  |  |
|-------------------------------------------------------------------|------------------------------|--|--|
| Design Parameters                                                 | Example Value                |  |  |
| Input Voltage                                                     | 5V Normal, 1.7V~6V           |  |  |
| Output Voltage 0.5V~5V                                            |                              |  |  |
| Maximum Output Current                                            | 500mA                        |  |  |
| Output Capacitor Range (Cout)                                     | 2.2uF~22uF , recommends 10uF |  |  |
| Input Capacitor Range (C <sub>IN</sub> ) >2.2uF , recommends 10uF |                              |  |  |

## **Typical application 2:**

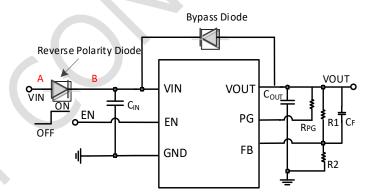



Figure 23. SCT71005Q Typical Application Schematic with Reverse Polarity Diode

| Design Parameters                        |                              |  |  |  |
|------------------------------------------|------------------------------|--|--|--|
| Design Parameters Example Value          |                              |  |  |  |
| Input Voltage                            | 5V Normal, 1.7V~6V           |  |  |  |
| Output Voltage                           | 0.5V~5V                      |  |  |  |
| Maximum Output Current                   | 500mA                        |  |  |  |
| Output Capacitor Range (Cout)            | 2.2uF~22uF , recommends 10uF |  |  |  |
| Input Capacitor Range (C <sub>IN</sub> ) | >2.2uF , recommends 10uF     |  |  |  |

20 For more information <u>www.silicontent.com</u> © 2023 Silicon Content Technology Co., Ltd. All Rights Reserved Product Folder Links: SCT71005Q Series



In some applications, the VIN and the VOUT potential might be reversed, possibly resulting in circuit internal damage or damage to the elements. For example, the accumulated charge in the output pin capacitor flowing backward from the VOUT to the VIN when the VIN shorts to the GND. In order to minimize the damage in such case, use a capacitor with a capacitance less than  $220\mu$ F. Also by inserting a reverse polarity diode in to the VIN, it can prevent reverse current from reverse battery connection or the case, when the point A is short-circuited GND. If there may be any possible case point B is short-circuited to GND, we also recommend using a bypass diode between the VIN and the VOUT.

#### **Typical application 3:**

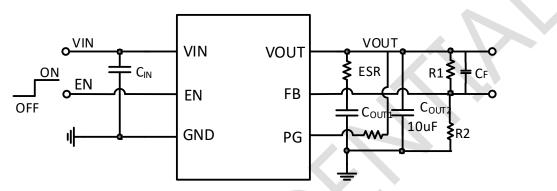



Figure 24. SCT71005Q Typical Application Schematic with Large Output Capacitor

| Design Parameters                                                 |                              |  |  |
|-------------------------------------------------------------------|------------------------------|--|--|
| Design Parameters                                                 | Example Value                |  |  |
| Input Voltage                                                     | 5V Normal, 1.7V~6V           |  |  |
| Output Voltage                                                    | 0.5V~5V                      |  |  |
| Maximum Output Current                                            | 500mA                        |  |  |
| Output Capacitor Range (Cout1 and ESR)                            | 2.2uF~220uF with ESR=0.5Ω~5Ω |  |  |
| Output Capacitor Range (Cout2)                                    | recommends 10uF with low ESR |  |  |
| Input Capacitor Range (C <sub>IN</sub> ) >2.2uF , recommends 10uF |                              |  |  |

#### **Typical application 4:**

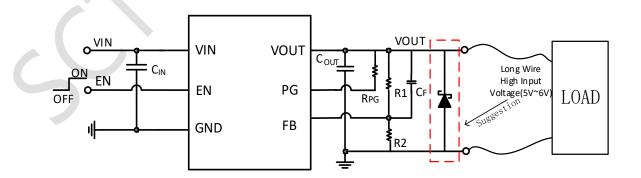



Figure 25. SCT71005Q Typical Application Schematic with Long Wire and High Input Voltage



| Design Parameters                        |                              |  |  |
|------------------------------------------|------------------------------|--|--|
| Design Parameters                        | Example Value                |  |  |
| Input Voltage                            | 5V Normal, 1.7V~6V           |  |  |
| Output Voltage                           | 0.5V~5V                      |  |  |
| Maximum Output Current                   | 500mA                        |  |  |
| Output Capacitor Range (COUT1 and ESR)   | 2.2uF~220uF with ESR=0.5Ω~5Ω |  |  |
| Output Capacitor Range (Cout2)           | recommends 10uF with low ESR |  |  |
| Input Capacitor Range (C <sub>IN</sub> ) | >2.2uF , recommends 10uF     |  |  |

A Schottlky diode is suggested between VOUT and GND under the applications of hard short event at high input voltage when big distance exists between the device and loads.



#### **Output Voltage**

The output voltage is set by an external resistor divider R1 and R2 in typical application schematic. Recommended R2 resistance is  $100k\Omega$ . Use equation 2 to calculate R1.

$$R_1 = \left(\frac{V_{OUT}}{V_{REF}} - 1\right) * R_2 \tag{2}$$

where:

• VREF is the feedback reference voltage, for SCT71005A01Q is 700mV and SCT71005A02Q is 500mV

Table 1: Compensation Values for Typical Output Voltage/Capacitor Combinations (SCT71005A01Q)

| Vout/V | COUT/uF | Cf/pF | R1/kΩ | R2/kΩ | COUT1/uF<br>(optional) | ESR/Ω |
|--------|---------|-------|-------|-------|------------------------|-------|
| 1.2    | 10      | 33    | 71.5  | 100   | 220                    | 1     |
| 1.8    | 10      | 33    | 158   | 100   | 220                    | 1     |
| 2.4    | 10      | 33    | 243   | 100   | 220                    | 1     |
| 3.3    | 10      | 33    | 374   | 100   | 220                    | 1     |
| 5      | 10      | 33    | 619   | 100   | 220                    | 1     |

Table 2: Compensation Values for Typical Output Voltage/Capacitor Combinations (SCT71005A02Q)

| Vout/V | COUT/uF | Cf/pF | R1/kΩ | R2/kΩ | COUT1/uF<br>(optional) | ESR/Ω |
|--------|---------|-------|-------|-------|------------------------|-------|
| 1.2    | 10      | 33    | 140   | 100   | 220                    | 1     |
| 1.8    | 10      | 33    | 261   | 100   | 220                    | 1     |
| 2.4    | 10      | 33    | 383   | 100   | 220                    | 1     |
| 3.3    | 10      | 33    | 562   | 100   | 220                    | 1     |
| 5      | 10      | 33    | 909   | 100   | 220                    | 1     |

#### Input Capacitor and Output Capacitor

SCT recommends adding a 2.2µF or greater capacitor with a 0.1µF bypass capacitor in parallel at VIN pin to keep the input voltage stable. Aluminum electrolytic capacitor or other capacitor with high capacitance is suggested for the system power with large voltage spike. The voltage rating of the capacitors must be greater than the maximum input voltage

To ensure loop stability, the SCT71005Q product requires an output capacitor with a minimum effective capacitance value of  $2.2\mu$ F. And the product could support output capacitor range from  $2.2\mu$ F to  $220\mu$ F and with an ESR range between  $0.001\Omega$  and  $5\Omega$ . SCT recommends selecting a X5R- or X7R-type  $4.7\mu$ F~10 $\mu$ F ceramic capacitor with low ESR over temperature range to improve the load transient response.

To further improve loop stability, we recommend using feed forward capacitors. The specific values can refer to the Figure26 and Figure27.



When using large output capacitor with higher ESR resistor, for example 100 $\mu$ F output electrolytic capacitor with 1 $\Omega$  ESR resistor in the application, SCT recommends adding extra 10 $\mu$ F low ESR output capacitor parallel connection with the large electrolytic capacitor, this will eliminate the undershoot/overshoot voltage caused by the large ESR resistor and get better load transient performance.

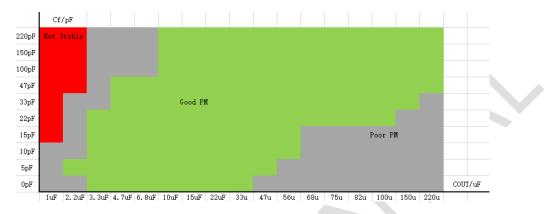



Figure 26. SCT71005Q Feed Forward Capacitors recommend(R2=100kΩ,VOUT=1.8V)

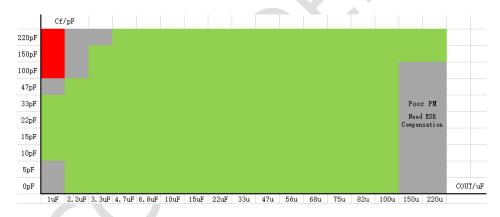



Figure 27. SCT71005Q Feed Forward Capacitors recommend(R2=10kΩ,VOUT=1.8V)

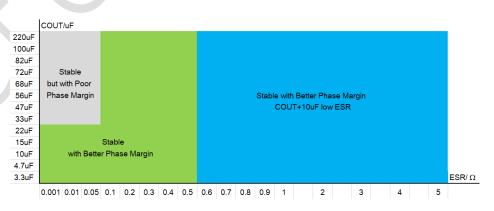



Figure 28. SCT71005 Stability vs Output Capacitor(Fixed Output)



#### **Power Dissipation and Thermal Performance**

Power dissipation caused by voltage drop across the LDO and by the output current flowing through the device needs to be dissipated out from the chip. The maximum junction temperature is dependent on power dissipation, package, the PCB layout, number of used Cu layers, Cu layers thickness and the ambient temperature.

During normal operation, LDO junction temperature should not exceed 150°C, or else it may result in deterioration of the properties of the chip. Using below equations to calculate the power dissipation and estimate the junction temperature.

The power dissipation can be calculated using Equation 3. Because I<sub>GND</sub> « I<sub>OUT</sub>, the term V<sub>IN</sub> x I<sub>GND</sub> in Equation 3 could be ignored.

$$P_D = (V_{IN} - V_{OUT}) \times I_{OUT} + V_{IN} \times I_{GND}$$

The junction temperature can be estimated using Equation 4.  $R_{\theta JA_EVM}$  is the junction-to-ambient thermal resistance based on customer's PCB. Verify the application and allow sufficient margins in the thermal design by the following method is used to calculate the junction temperature  $T_J$ .

$$T_J = T_A + P_D \times R_{\theta JA\_EVM} \tag{4}$$

 $R_{\theta JA\_EVM}$  is a critical parameter and depends on many factors such as the following:

- · Power dissipation
- Air temperature/flow
- PCB area
- Copper heat-sink area
- Number of thermal vias under the package
- Adjacent component placement

For the SCT71005Q series products, the maximum allowable power dissipation of different packages was listed in the following table, and the test results are based on our EVM board, larger power dissipation will trigger thermal shutdown protection. As a result, we could calculate the  $R_{\theta JA\_EVM}$  of different packages. The following table is just for your reference based on our EVM test, please leave enough margin when you design thermal performance.

The PCB information of our EVM: 4-layer, 1oz Cu (inner 0.5oz Cu),.

#### Thermal Performance of Different Packages Based on EVM Test

| Package   | Max Allowable PD (W)<br>(Not Trigger TSD,VOUT=5V) | Max Allowable PD (W)<br>(TJ≤150℃) | R <sub>θJA_EVM</sub> (°C/W) |
|-----------|---------------------------------------------------|-----------------------------------|-----------------------------|
| SOT23-5   | 1.579                                             | 1.36                              | 91.81                       |
| TDFN2X2-6 | 2.033                                             | 1.75                              | 71.31                       |
| TDFN2X3-8 | 2.46                                              | 2.12                              | 59.04                       |



(•)

(3)

# THERMAL CHARACTERISTICS

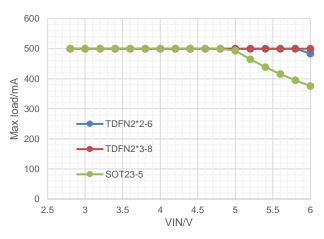



Figure 29. Maximum Output Current vs Input Voltage, VOUT=1.8V of Different Packages ,TJ  $\leq$  TSD R

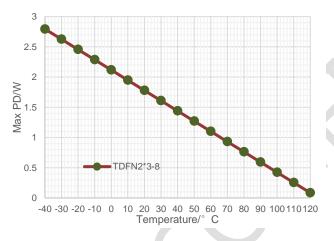



Figure 31. Maximum Allowed Power Dissipation vs Ambient Temperature, TDFN2x3-8,TJ  $\leq 125\,^\circ\!\!{\rm C}$ 

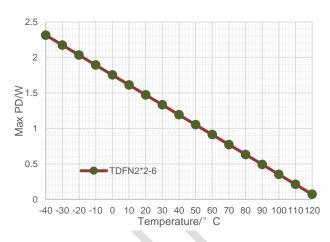



Figure 30. Maximum Allowed Power Dissipation vs Ambient Temperature, TDFN2x2-6,TJ  $\leq 125^{\circ}$ C

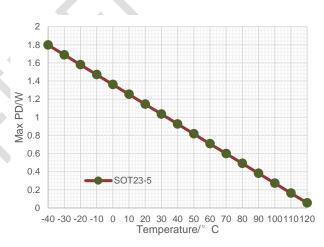
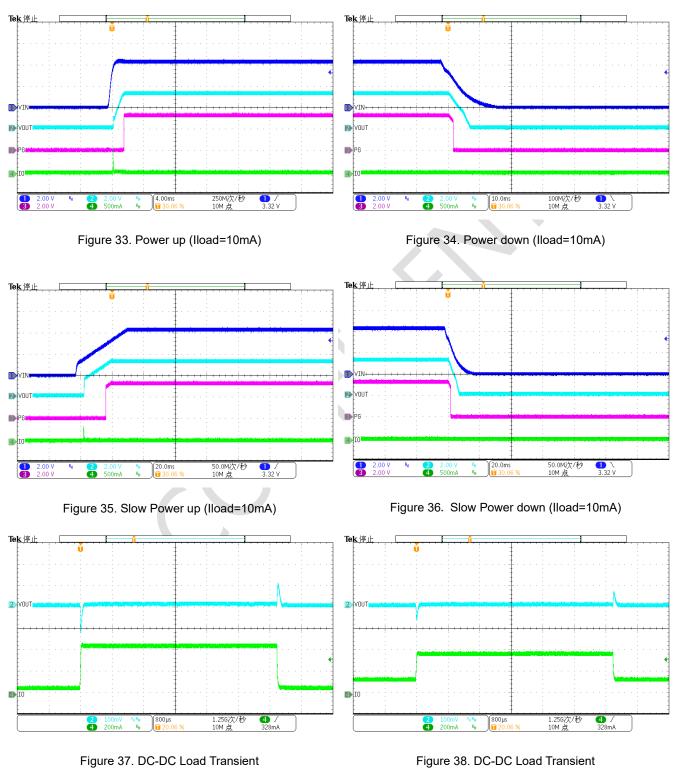




Figure 32. Maximum Allowed Power Dissipation vs Ambient Temperature, SOT23-5,TJ ≤ 125 ℃

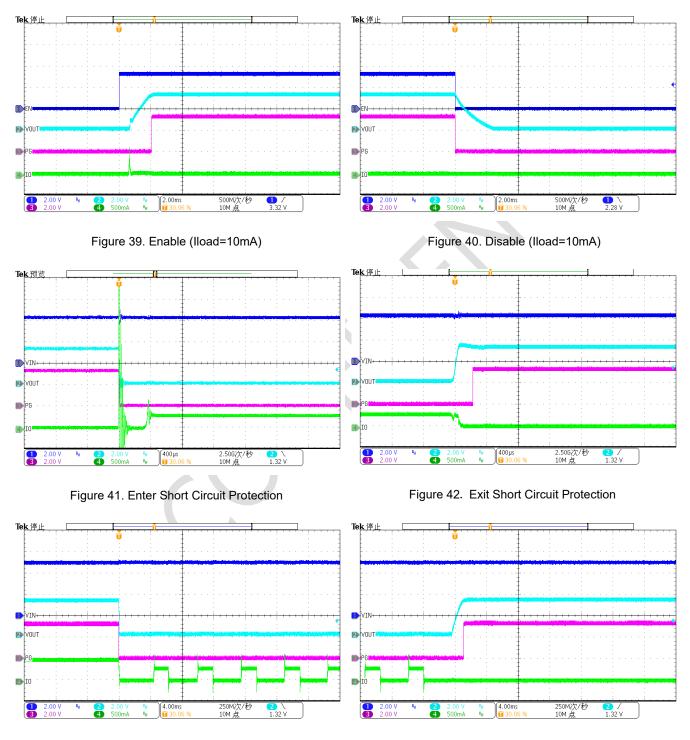


## **Application Waveforms**

Vin=Vout +1V, unless otherwise noted



(50mA-450mA),VOUT=3.3V


(130mA-370mA),Vout=3.3V

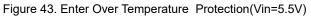


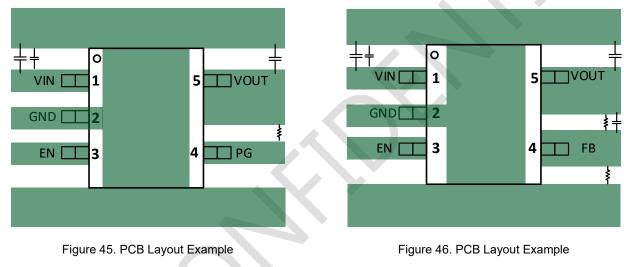
For more information <u>www.silicontent.com</u> © 2023 Silicon Content Technology Co., Ltd. All Rights Reserved 27 Product Folder Links: SCT71005Q Series

## Application Waveforms(Continued)

Vin=Vout +1V, unless otherwise noted







Figure 44. Exit Over Temperature Protection(Vin=5.5V)



### Layout Guideline

Proper PCB layout is a critical for SCT71005Q's stability, transient performance and good regulation characteristics. For better results, follow these guidelines as below:

- 1. Both input capacitors and output capacitors must be placed as close to the device pins as possible.
- It is recommended to bypass the input pin to ground with a 0.1µF bypass capacitor. The loop area formed by the bypass capacitor connection, V<sub>IN</sub> pin and the GND pin of the system must be as small as possible.
- 3. It is recommended to use wide trace lengths or thick copper weight to minimize I×R drop and heat dissipation.
- 4. To improve the thermal performance of the device, and maximize the current output at high ambient temperature, SCT recommends spreading the copper under the thermal pad as far as possible and placing enough thermal vias on the copper under the thermal pad.
- 5. If using large electrolytic capacitor with high ESR resistor, SCT recommends adding a 10uF low ESR capacitor parallel connection with the large electrolytic capacitor.





#### SCT71005A01QTWDR

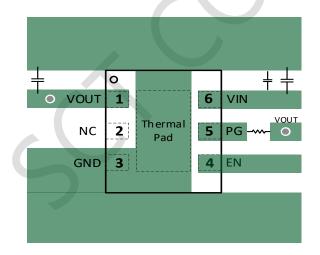



Figure 47. PCB Layout Example

#### SCT71005FxxQDVAR

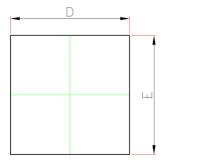
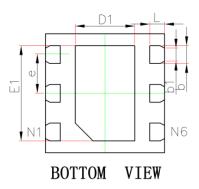
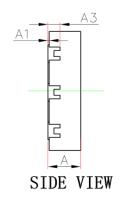




Figure 48. PCB Layout Example


#### SCT71005A02QDTDR



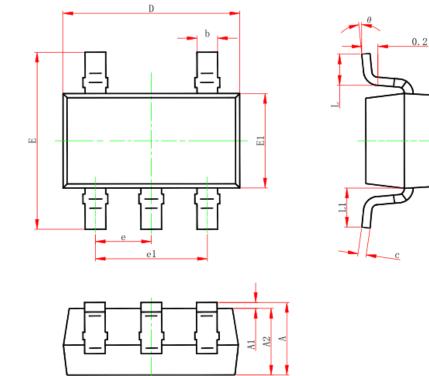

# PACKAGE INFORMATION










| TDFN2x2-6 Pa | ickage C | Dutline Di | mensions |
|--------------|----------|------------|----------|

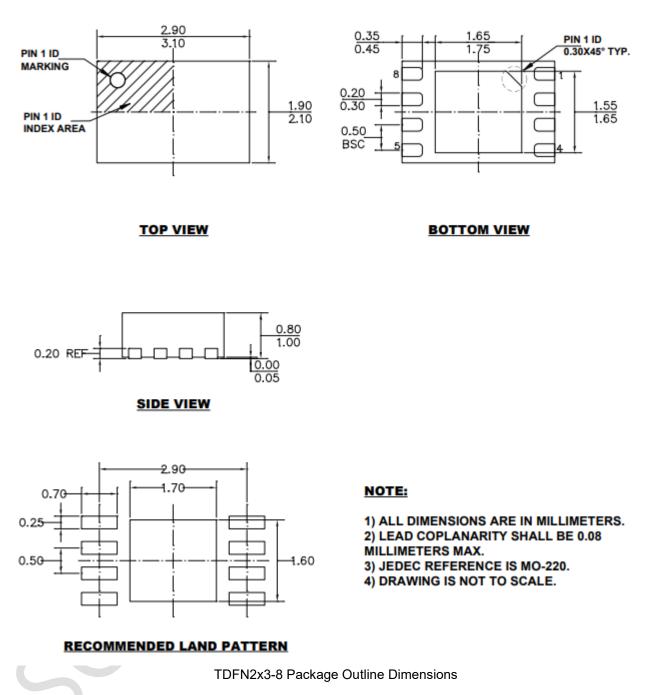
| Symbol | Dimensions in Millimeters |       | Dimensions in Inches |       |
|--------|---------------------------|-------|----------------------|-------|
| Symbol | Min.                      | Max.  | Min.                 | Max.  |
| А      | 0.700                     | 0.800 | 0.028                | 0.031 |
| A1     | 0.000                     | 0.050 | 0.000                | 0.002 |
| A3     | 0.203                     | 3 REF | 0.008                | REF.  |
| D      | 1.900                     | 2.100 | 0.075                | 0.083 |
| E      | 1.900                     | 2.100 | 0.075                | 0.083 |
| D1     | 0.900                     | 1.100 | 0.035                | 0.043 |
| E1     | 1.500                     | 1.700 | 0.059                | 0.067 |
| b      | 0.250                     | 0.350 | 0.010                | 0.014 |
| b1     | 0.220 REF.                |       | 0.009 REF.           |       |
| е      | 0.650 BSC.                |       | 0.026                | BSC.  |
| L      | 0.174                     | 0.326 | 0.007                | 0.013 |

- 1. Drawing proposed to be made a JEDEC package outline MO-220 variation.
- 2. Drawing not to scale.
- 3. All linear dimensions are in millimeters.
- 4. Thermal pad shall be soldered on the board.
- 5. Dimensions of exposed pad on bottom of package do not include mold flash.
- 6. Contact PCB board fabrication for minimum solder mask web tolerances between the pins.



# PACKAGE INFORMATION

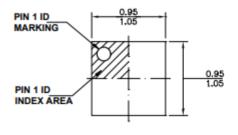


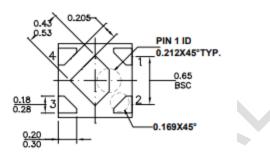

SOT23-5 Package Outline Dimensions

| Symbol | Dimensions in Millimeters |       | Dimensions in Inches |       |
|--------|---------------------------|-------|----------------------|-------|
| Symbol | Min.                      | Max.  | Min.                 | Max.  |
| А      | 1.050                     | 1.250 | 0.041                | 0.049 |
| A1     | 0.000                     | 0.100 | 0.000                | 0.004 |
| A2     | 1.050                     | 1.150 | 0.041                | 0.045 |
| b      | 0.300                     | 0.500 | 0.012                | 0.020 |
| С      | 0.100                     | 0.200 | 0.004                | 0.008 |
| D      | 2.820                     | 3.020 | 0.111                | 0.119 |
| E1     | 1.500                     | 1.700 | 0.059                | 0.067 |
| E      | 2.650                     | 2.950 | 0.104                | 0.116 |
| е      | 0.950 (BSC)               |       | 0.037                | (BSC) |
| e1     | 1.800                     | 2.000 | 0.071                | 0.079 |
| Ĺ      | 0.300                     | 0.600 | 0.012                | 0.024 |
| L1     | 0.600 REF                 |       | 0.024                | REF   |
| θ      | 0°                        | 8°    | 0°                   | 8°    |

- 1. Drawing proposed to be made a JEDEC package outline MO-220 variation.
- 2. Drawing not to scale.
- 3. All linear dimensions are in millimeters.
- 4. Thermal pad shall be soldered on the board.
- 5. Dimensions of exposed pad on bottom of package do not include mold flash.
- 6. Contact PCB board fabrication for minimum solder mask web tolerances between the pins.

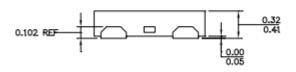



# **PACKAGE INFORMATION**

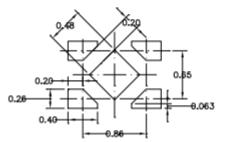



- 1. Drawing proposed to be made a JEDEC package outline MO-220 variation.
- 2. Drawing not to scale.
- 3. All linear dimensions are in millimeters.
- 4. Thermal pad shall be soldered on the board.
- 5. Dimensions of exposed pad on bottom of package do not include mold flash.
- 6. Contact PCB board fabrication for minimum solder mask web tolerances between the pins.




## **PACKAGE INFORMATION**






#### TOP VIEW



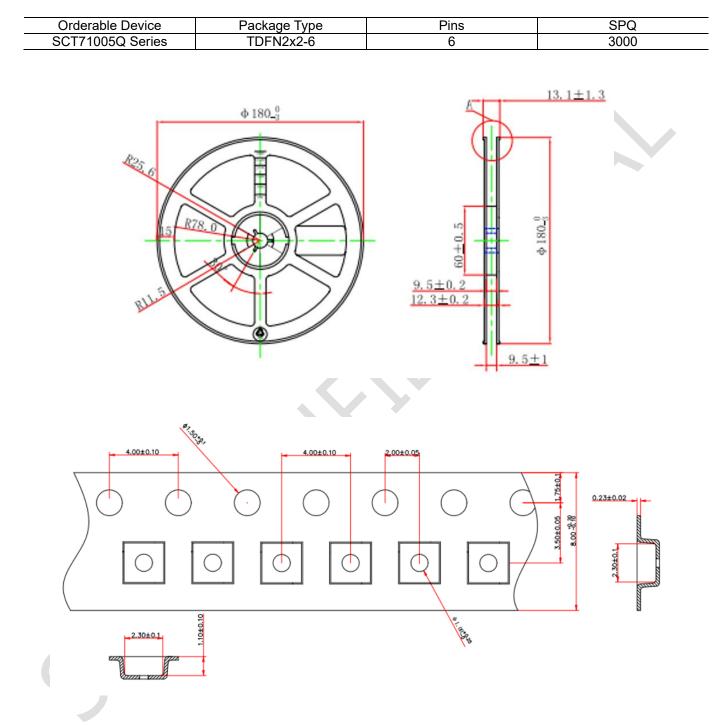


#### SIDE VIEW



#### NOTE:

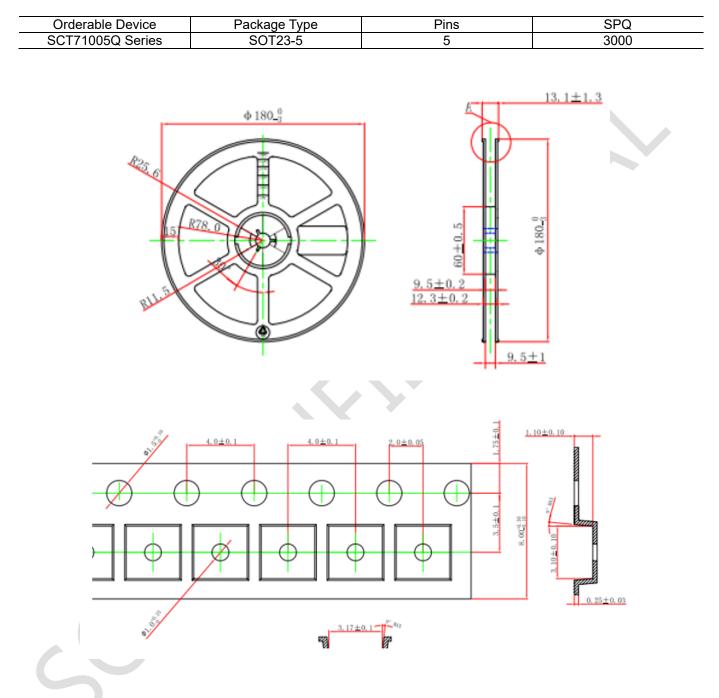
 ALL DIMENSIONS ARE IN MILLIMETERS.
 LEAD COPLANARITY SHALL BE 0.08 MILLIMETERS MAX.
 JEDEC REFERENCE IS MO-220.
 DRAWING IS NOT TO SCALE.


#### RECOMMENDED LAND PATTERN

DFN1x1-4 Package Outline Dimensions

- 1. Drawing proposed to be made a JEDEC package outline MO-220 variation.
- 2. Drawing not to scale.
- 3. All linear dimensions are in millimeters.
- 4. Thermal pad shall be soldered on the board.
- 5. Dimensions of exposed pad on bottom of package do not include mold flash.
- 6. Contact PCB board fabrication for minimum solder mask web tolerances between the pins.

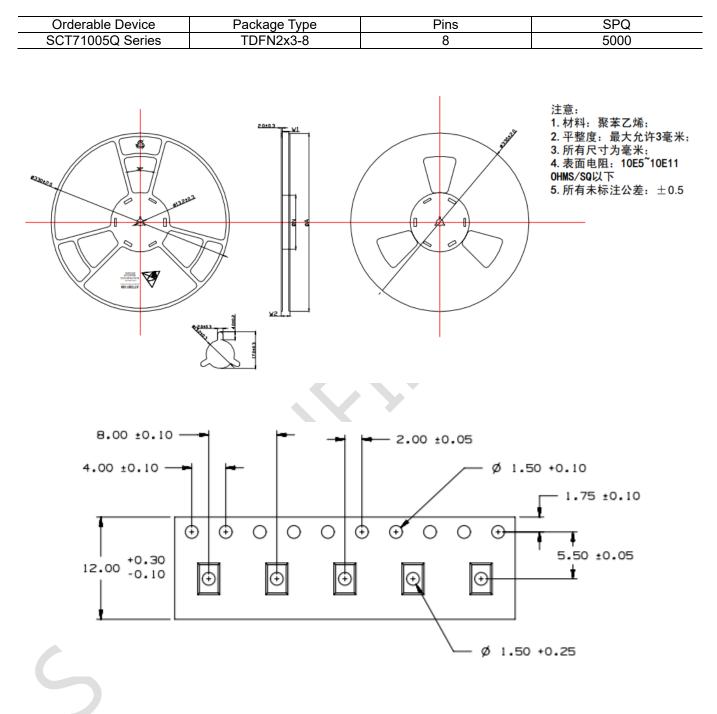



# TAPE AND REEL INFORMATION



**NOTICE:** The information in this document is subject to change without notice. Users should warrant and guarantee the third party Intellectual Property rights are not infringed upon when integrating Silicon Content Technology (SCT) products into any application. SCT will not assume any legal responsibility for any said applications.




## TAPE AND REEL INFORMATION



**NOTICE:** The information in this document is subject to change without notice. Users should warrant and guarantee the third party Intellectual Property rights are not infringed upon when integrating Silicon Content Technology (SCT) products into any application. SCT will not assume any legal responsibility for any said applications.



# TAPE AND REEL INFORMATION



**NOTICE:** The information in this document is subject to change without notice. Users should warrant and guarantee the third party Intellectual Property rights are not infringed upon when integrating Silicon Content Technology (SCT) products into any application. SCT will not assume any legal responsibility for any said applications.

